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A B S T R A C T

Summer mortality is a phenomenon associated with high temperature water spikes that can result in mass
mortalities of abalone and other molluscs. This is a particular concern for aquaculture industries due to the
economic impacts of such events. Diets containing algal supplements have been suggested as pre-emptive so-
lutions for preventing these mass mortalities. The same has also been suggested for diets containing grape seed
extract. This is due to their potential as a source of antioxidative compounds, which reduce the accumulation of
harmful reactive oxygen species. This study aimed to identify functional genes associated with high survival in
abalone fed diets high in antioxidative compounds during heat stress. Tentacle transcriptomes of 40 greenlip
abalone (Haliotis laevigata) were investigated to determine the combined effects of differing diets and tem-
perature on the gene expression responses by abalone. Here we compare the functional gene expression changes
at 22 °C and 25 °C in abalone fed common commercial, live macroalgal (Ulva lactuca) and grape seed extract
supplemented commercial diets as a means to understand the resulting high survival of abalone fed grape seed
extract during heat stress. Twenty-four genes were differentially expressed between high survival promoting
diets (macroalgae or grape seed extract supplemented commercial) relative to the purely commercial diet. Many
of these genes have been suggested to be involved in antioxidant and innate immunity responses. The identi-
fication of these genes and their functional roles has enhanced our understanding of processes that contribute to
summer stress resilience in abalone. Our study supports the hypothesis that diet and gene expression signatures
may be indicative of the survival capabilities of abalone when exposed to heat stress.

1. Introduction

The high demand for abalone as a luxury food source has caused a
decline in wild stocks globally, but has also stimulated the growth of
abalone aquaculture (Cook and Gordon, 2010). The transition of marine
and freshwater species to aquaculture can prove challenging due to the
potential increase of stressors, such as increased stock densities,

increased handling of animals and the different climatic or chemical
conditions experienced in the culture environment. Optimizing artifi-
cial feeds to replace natural diets is an additional challenge (Kurmaly
et al., 1989) yet is essential due to the prohibitively high cost of natural
diets. The diet composition of commercially important aquaculture
species is vital for growth (Fernandez-Jover and Sanchez-Jerez, 2015),
survival (DeGrandi-Hoffman et al., 2016; Rodney and Confred, 2016),
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reproductive success (Kennedy et al., 2016; Rojas et al., 2016) and
product quality (Egea et al., 2016; Megersa et al., 2013).

Abalone are anatomically and biochemically adapted to digest
macroalgae which forms an essential component of their natural diet in
the wild (Garcıa-Carreno et al., 2003). The use of commercial aqua-
culture feeds typically result in high growth rates (Bautista-Teruel et al.,
2003; Fleming et al., 1996), while abalone fed macroalgae diets have
varied growth rates, depending on the algal species used (Naidoo et al.,
2006). Macroalgae as an ingredient in abalone feed has numerous
benefits for aquaculture including the promotion of sustained high
feeding activity, optimal health and marketability (Bansemer et al.,
2014). Feed containing macroalgae is also highly effective at preventing
mass mortalities during heat stress events known as “summer mor-
talities” (Bansemer et al., 2016; Stone et al., 2014). However, due to the
high costs of growing, harvesting and processing algal biomasses,
compared to the costs of manufacturing commercial feed utilizing al-
ternative ingredients, the use of algae as a direct feed source is gen-
erally confined to the early nursery life stages (Shields and Lupatsch,
2012).

High water temperature is the key driver of summer mortality, a
phenomenon that occurs in both wild and culture environments during
the summer months (Vandepeer, 2006). Summer mortality is known to
be highly complex, partially driven by chemical water changes asso-
ciated with increased temperatures (such as lower dissolved oxygen,
and changes in nutritional factors and pH) which are thought to com-
promise the immune system and make abalone more vulnerable to in-
fection by bacteria such as Vibrio (Cardinaud et al., 2015; Vandepeer,
2006). Summer mortality on abalone farms may be induced by sudden
temperature spikes, and may also be exacerbated by a compromised
metabolism, which can result from nutritionally unbalanced diets. This
can cause cellular damage and ultimately death, potentially due to
oxidative stress (Stone et al., 2014).

In general, abalone fed a macroalgae diet have higher antioxidant
capabilities compared to those fed a commercial diet (Wan et al., 2004).
Macroalgae have been reported to exhibit antimicrobial activities
(Manivannan et al., 2011; Rattaya et al., 2015; Salvador Soler et al.,
2007) as well as providing an array of beneficial nutrients and com-
pounds when ingested (Ahn et al., 2002; Chandini et al., 2008; Cruz-
Suárez et al., 2010). Given the high costs of macroalgae, interest has
recently turned to trialing the use of food by-products and herbal ex-
tracts as a cost effective dietary supplement to commercial feeds in
animal husbandry (Costa et al., 2013).

Grape seed extract (GSE) is rich in polyphenolic compounds and has
well documented antioxidant, antimicrobial and anti-inflammatory
properties when ingested (Perumalla and Hettiarachchy, 2011). In
abalone, GSE has already been shown to act as an efficient dietary
additive to improve productivity and reduce mortality during summer
mortality events (Duong et al., 2016; Lange et al., 2014). However due
to the complex nature of summer mortality and its association with
numerous potential stressors, it is difficult to pinpoint the precise me-
chanism resulting in the increased survival of abalone.

RNA sequencing (RNA-seq) reveals a snapshot of an organisms gene
expression at a specific time (Chu and Corey, 2012) and has proven to
be a useful tool for identifying important gene pathways affected by
different diets in chickens (Li et al., 2014; Xu et al., 2015), fish (Reyes-
Becerril et al., 2013; Yarahmadi et al., 2014), shrimp (Zhang et al.,
2013), oysters (Joubert et al., 2014) and abalone (Wu et al., 2010;
Zhang et al., 2010; Mateos et al., 2012b). For abalone, gene expression
analysis has been shown to be an efficient tool used to study targeted
biological pathways involving the effects of dietary oil (Mateos et al.,
2011, 2012a, b), zinc (Wu et al., 2011), selenium (Y. Zhang et al.,
2011), iron (Wu et al., 2010) and α-lipoic acid (Zhang et al., 2010).

The aim of this study was to utilize a RNA-seq approach to in-
vestigate the interactive effects of water temperature (heat stress) and
diet composition on abalone gene expression. Differences in gene ex-
pression in response to heat stress between abalone fed live Ulva lactuca

or a commercial diet with or without 5% GSE supplementation were
examined. Mechanisms and diet related gene pathways that may be
responsible for promoting abalone survival during a heat stress event
are discussed.

2. Methods

Details of study animals, temperature challenge procedure and re-
sulting survival for abalone fed commercial and GSE supplemented
diets for this study are described in Duong et al. (2016). Treatment
groups of abalone fed a 100% live U. lactuca diet were run simulta-
neously alongside the commercial diet treatment groups described in
Duong et al. (2016) under the same conditions.

2.1. Experimental treatments and diets

Five treatments were used in this study: (i) commercial diet fed
abalone maintained at 22 °C, (ii) commercial diet fed abalone main-
tained at 25 °C, (iii) commercial + 5%GSE diet fed abalone maintained
at 25 °C, (iv) live U. lactuca fed abalone maintained at 22 °C and (v) live
U. lactuca fed abalone maintained at 25 °C. The “commercial” diet was
provided by Eyre Peninsula Aquafeeds and consisted of Abgrow diet
5 mm chips. The “commercial + 5%GSE” diet consisted of 5%
Australian GSE (GSeedEX grape seed tannin, Tarac Technologies Pty
Ltd., Nuriootpa, SA, Australia) formulated into Abgrow mash as de-
scribed in Lange et al. (2014). The live U. lactuca was collected from the
Outer Harbor area of St Vincent Gulf, South Australia. U. lactuca was
cultured at South Australian Research and Development Institute, South
Australian Aquatic Science Centre (SARDI SAASC) under natural light
and an ambient photoperiod in 4000-L parabolic tanks containing sand-
filtered seawater, as described by Stone et al. (2014). The live U. lactuca
diet will hereafter be referred to as the “Ulva” diet. All abalone diet
treatments were fed to excess at 16:00 with cleaning and collection of
uneaten food performed daily at 8:30 as detailed in Duong et al. (2016).

2.2. Experimental system

Three-year-old greenlip abalone (Haliotis laevigata) were obtained
from South Australian Mariculture (Boston Point, Port Lincoln, South
Australia). One month prior to the experiment, abalone were trans-
ferred to 500 L flow through holding tanks at SARDI with aerated
seawater (21 °C), photoperiod and fed 5 mm commercial diet chips. Ten
abalone at a time were removed from the holding tanks and inter-
spersed among four replicate tanks per treatment. The experiment ran
for 38 days including a one week acclimatization period where tem-
peratures were raised by ~1 °C per day from 21 °C to the treatment
temperatures of 22 °C and 25 °C. 22 °C was selected as the control
temperature as it is the highest temperature at which no mortalities
have been recorded and is considered an optimal temperature for
growth (Lange et al., 2014). Animals that died throughout the experi-
ment were weighed and recorded and replaced with similar sized
tagged abalone to maintain stocking densities. Abalone replaced
throughout the experiment to maintain stocking densities were not
selected for final sampling and RNA-seq. The experimental procedure is
described in detail in Duong et al. (2016).

2.3. Sampling collection and RNA extraction

On the final day of the experiment, 2–3 epipodial tentacles of two
abalone from each of the treatment tanks were sampled using dissection
scissors (four tanks per treatment). This resulted in eight samples per
experimental treatment. Sampling occurred within 2 min after abalone
were removed from the tank. Tentacles were immediately stored in
RNAlater, placed on ice and subsequently stored at −80 °C.

Epipodium can be clipped without harming the animal, has been
found to be responsible for up to 14% of oxygen uptake (Taylor and
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Ragg, 2005) and contains the second largest volume of haemolymph,
second to the kidney (Jorgensen et al., 1984), and therefore, sampling
this tissue enables us to develop practical and non-lethal means for
studying the response of the transcriptome to summer stressors, diets
and other factors of importance to abalone aquaculture. The tran-
scriptome of tissue and haemolymph from the epipodium has been
successfully applied to study the response of abalone to temperature
stress (Liang et al., 2014), the basal gene expression of summer mor-
tality resilient and susceptible abalone (Shiel et al., 2017), and to find
genes differentially expressed in association with fast growth in abalone
(Choi et al., 2015).

RNA was extracted from epipodial tentacle samples using an
RNeasy® Mini Kit (Qiagen) according to the manufacturer's protocol
“Purification of Total RNA from Animal Tissue”. Tissue samples were
disrupted and homogenized using a desktop homogenizer
(Janke & Kunkel, Ultra-Turrax T25). RNA quality and quantity was es-
timated using a Thermo Scientific Nanodrop (2000). Library preparation
and 100 base pair (bp) single-end RNA sequencing (Illumina
HiSeq2000) (two lanes) was outsourced to the Australian Genome
Research Facility (AGRF). Gene expression sequence data used in this
study is available in the NCBI Short Read Archive under Bioproject
PRJNA286263.

2.4. Sequence mapping

In the absence of a reference genome for H. laevigata, a de novo
transcriptome was previously assembled as a reference for read map-
ping and tentacle gene expression profiling (Shiel et al., 2015). In-
dividual genes for each sample were mapped back to the transcriptome
with the alignment program Bowtie (Version 1.0.0) (Langmead et al.,
2009) as implemented in Trinity (Version 10.5.2012) (Grabherr et al.,
2011). Transcript abundance of de novo assembled genes was calculated
using RSEM (Li and Dewey, 2011).

2.5. Differential expression

RSEM count data analyses were performed using R (version 3.3.0).
We utilized the Limma RNA-seq differential gene expression method
(Smyth, 2005), which uses the Voom module to transform the data
based on observational-level weights derived from the mean-variance
relationship (Ritchie et al., 2015). This method calculates the non-
parametric estimates of mean-variance relationships to estimate
weights for a linear model analysis of log-transformed counts (nor-
malized for sequence depth) with the empirical Bayes Shrinkage of
variance parameters. Differential expression analyses were performed
to examine the differences in gene expression between feed and tem-
perature treatments of interest by first fitting a linear model to estimate
the variability in the data with lmFit (Smyth, 2005) including all five
treatments with commercial diet representing the baseline. Grouping of
abalone within tanks was accounted for by including tank as random
effect with the duplicateCorrelation function within Limma (Smyth,
2005) that estimates a common value for the intra-duplicate correla-
tion.

Tests for differential expression were performed by constructing the
following pairwise contrasts based on this model (i) Ulva diet at 22 °C
vs. a commercial diet at 22 °C, (ii) Ulva diet at 25 °C vs. a commercial
diet at 25 °C, (iii) commercial + 5%GSE diet at 25 °C vs. a commercial
diet at 25 °C, (iv) Ulva diet at 22 °C vs. an Ulva diet at 25 °C, (v) com-
mercial diet at 22 °C at vs. a commercial diet at 25 °C. In order to
identify genes showing differential expression, an omnibus test (F-test)
was used to analyze the effects of diet (contrasts i, ii & iii) and the ef-
fects of temperature (contrasts iv & v). Genes differentially expressed
were selected by F-test with a 5% false discovery rate (FDR) (Benjamini
and Hochberg, 2000). Multidimensional scaling was used to visualize
relatedness of the experimental groups (control commercial diets versus
the GSE supplemented and Ulva diets). Given a set of expression values

for genes under the five experimental conditions, a matrix of up/down
gene signature patterns was constructed with a comparison of the ex-
perimental group means to the global mean (Fig. 2). A heatmap was
generated in R using the heatmap.2 function (omitting row and den-
drograms) of the gplots package (Warnes, 2016).

2.6. Functional annotation and key transcript validation

Differentially expressed genes were annotated using the Trinotate
pipeline (version 1.1; http://trinotate.github.io/). Trinotate provides
functional annotations for transcriptome sequences by combining pro-
tein prediction (via Transdecoder) (http://transdecoder.github.io/) and
BLAST (Altschul et al., 1990) homology with the UniProt database,
identification of Pfam (Finn et al., 2013) domains using HMMER (Finn
et al., 2011), prediction of signal peptides using SignalP (Petersen et al.,
2011), transmembrane regions using tmHMM (Krogh et al., 2001) and
rRNA using RNAMMER (Lagesen et al., 2007). Trinotate assigned
SwissProt identifiers (Farriol-Mathis et al., 2004) to differentially ex-
pressed genes. For the genes of interest presented in this study, if no
SwissProt identifier was found, BLAST searches against non-redundant
protein and nucleotide databases were attempted (1e-5 threshold).
Gene Ontology (GO) terms were retrieved from QuickGO (Binns et al.,
2009). These GO terms were used to determine the higher-level im-
mune response GO classifications using CateGOrizer (www.
animalgenome.org/tools/catego/) through the Immune System Gene
Classes classification method with consolidated single occurrences.

3. Results

3.1. Survival

After the 38 day trial, the survival of greenlip abalone fed a com-
mercial diet at 22 °C was 85% and was significantly higher than the
40% survival recorded for abalone fed the same diet at 25 °C (n = 40;
P < 0.001; Kaplan-Meier; Log-Rank test; Fig. 1). Dissimilarly, the
survival of abalone fed commercial + 5%GSE diet at 25 °C (77.5%) was
not significantly reduced in comparison to the same 22 °C commercial
diet control abalone (n = 40; P = 0.402; Kaplan-Meier; Log-Rank test;
Fig. 1). The survival of abalone fed an Ulva diet at 22 °C was 72.5% and
was not significantly less in abalone fed the same diet at 25 °C (52.5%)
(n = 40; P = 0.078; Kaplan-Meier; Log-Rank test; Fig. 1). Pairwise
comparison Log-Rank tests for all treatments available in Fig. S1.

3.2. Differential expressed genes related to diet

Twenty-four genes were found to be differentially expressed
(FDR < 0.05) using an F-test across the three diet and temperature

Fig. 1. Kaplan-Meier survival curves of greenlip abalone (Haliotis laevigata) fed the
commercial and Ulva diets at 22 °C, and the commercial diet, Ulva diet and commercial
+ 5%GSE diet at 25 °C.
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Table 1
Differentially expressed genes due to diet. Log2 fold-change from commercial diet controls (C22 & C25) are displayed for Ulva 22 °C (U22), Ulva 25 °C (U25) and the commercial
+ 5%GSE diet at 25 °C (G25). Adjusted P value corresponds to an F-test across all three of the contrasts for which Log2 fold-changes are shown. Log2 average CPM (counts per million) of
each gene is displayed.

Transcript SwissProt ID Protein description Immune class gene ontology Log2 fold change Adjusted P
value (FDR)

Average CPM
(Log2)

U22 vs.
C22

U25 vs.
C25

G25. vs
C25

comp103470_c1 ACT_PLAMG Actin, adductor muscle – −0.62 −0.55 −0.15 0.0474 11.43
comp96445_c0 EIF3J_XENTR Eukaryotic translation initiation

factor 3 subunit J
GO:0008152 - metabolism
GO:0019538 - protein metabolism

−0.56 −0.16 0.24 0.0383 8.27

comp102190_c0 CATA_DROME Catalase GO:0005739 - mitochondrion
GO:0006950 - stress response
GO:0008152 - metabolism
GO:0009056 - catabolism

−0.37 −0.44 0.22 0.0474 7.95

comp102157_c0 6PGD_HUMAN 6-phosphogluconate
dehydrogenase, decarboxylating

GO:0005975 - carbohydrate
metabolism
GO:0008152 - metabolism

−0.55 −0.45 −0.13 0.0474 7.50

comp90124_c0 – – – −0.66 −0.15 0.26 0.0474 7.45
comp97610_c0 S6A13_MOUSE Sodium- and chloride-dependent

GABA transporter 2
– −0.65 −0.32 −0.03 0.0460 6.23

comp104372_c1 MARH4_DANRE E3 ubiquitin-protein ligase
MARCH4

GO:0008152 - metabolism
GO:0019538 - protein metabolism

0.70 0.45 −0.02 0.0460 6.21

comp91191_c0 PSA5_MOUSE Proteasome subunit alpha type-5 GO:0008152 - metabolism
GO:0009056 - catabolism
GO:0019538 - protein metabolism
GO:0042590 - antigen
presentation, exogenous antigen
via MHC class I

−0.48 −0.27 −0.14 0.0474 5.96

comp87791_c0 ERP29_BOVIN Endoplasmic reticulum resident
protein 29

GO:0000165 - MAPKKK cascade
GO:0006915 - apoptosis
GO:0006950 - stress response
GO:0008152 - metabolism
GO:0019538 - protein metabolism
GO:0042981 - regulation of
apoptosis
GO:0043408 - regulation of
MAPKKK cascade

−0.75 0.24 0.21 0.0474 5.96

comp107321_c1 – – – −0.32 −0.30 −0.13 0.0474 5.87
comp98011_c0 – – – −0.32 −0.48 −0.38 0.0474 5.61
comp97842_c0 PCY2_HUMAN Ethanolamine-phosphate

cytidylyltransferase
GO:0006629 - lipid metabolism
GO:0008152 – metabolism

−0.36 −0.22 −0.16 0.0460 5.60

comp90914_c0 G6PI_PIG Glucose-6-phosphate isomerase GO:0005125 - cytokine activity
GO:0005975 - carbohydrate
metabolism
GO:0008152 - metabolism
GO:0009056 – catabolism

−0.49 −0.53 −0.07 0.0474 5.48

comp91012_c1 NFAT5_HUMAN Nuclear factor of activated T-cells 5 GO:0001816 - cytokine
production
GO:0006950 - stress response
GO:0008152 - metabolism
GO:0009628 - response to abiotic
stimulus

0.45 0.57 0.34 0.0474 5.13

comp77500_c0 BL1S2_XENTR Biogenesis of lysosome-related
organelles complex 1 subunit 2

– −0.45 −0.34 −0.20 0.0258 4.82

comp91841_c0 – – – −1.00 −0.18 −0.32 0.0474 4.57
comp104589_c0 MANF_HUMAN Mesencephalic astrocyte-derived

neurotrophic factor
GO:0006950 - stress response −1.15 0.00 −0.11 0.0474 4.40

comp35390_c0 – – – 0.38 0.52 0.26 0.0383 4.18
comp103377_c0 FACE1_MOUSE CAAX prenyl protease 1 homolog GO:0008152 - metabolism

GO:0009056 - catabolism
GO:0019538 - protein metabolism

−0.50 −0.17 0.10 0.0258 4.17

comp103327_c0 128UP_DROME GTP-binding protein 128up – −0.61 −0.20 −0.09 0.0474 4.01
comp97852_c0 – – – −0.56 −0.36 −0.42 0.0310 3.94
comp101706_c0 CE051_DANRE UPF0600 protein C5orf51 homolog – −0.61 −0.55 −0.27 0.0474 3.46
comp101200_c1 ABCA1_MOUSE ATP-binding cassette sub-family A

member 1
GO:0006629 - lipid metabolism
GO:0006897 - endocytosis
GO:0006909 - phagocytosis
GO:0006950 - stress response
GO:0008152 - metabolism
GO:0009605 - response to
external stimulus
GO:0019538 - protein metabolism

−0.58 −0.08 0.48 0.0474 3.35

comp102246_c1 PATS1_DICDI Probable serine/threonine-protein
kinase pats1

GO:0000910 - cytokinesis
GO:0008152 - metabolism
GO:0019538 - protein metabolism

−0.85 −0.64 −0.37 0.0474 2.86
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contrasts described in Section 2.5 (Table 1). Average expression of these
genes ranged from 2.86 to 11.43 counts per million (log2) with rela-
tively low fold changes (Table 1).

Eighteen of the 24 differentially expressed genes discovered were
assigned a homologous Swissprot gene ID (Table 1). The remaining six
genes were unable to be annotated with a further NCBI non-redundant
BLASTX database search (E value cutoff: 1 × 10−5). Seventeen of the
18 annotated genes were assigned Gene Ontology (GO) terms (Table
S1). In total, 260 GO terms were assigned to the differentially expressed
genes. Eighty-eight of these GO terms were assigned to 19 higher im-
mune related classification GO terms (Table S2). A large majority of the
genes have known involvement in metabolism (n = 12) and more
specifically protein metabolism (n = 7). A smaller proportion of genes
were identified to have known involvement in stress responses (n = 5;
Table 1).

3.3. Gene signature profiling of abalone fed commercial and Ulva diets

The greatest difference in the expression levels of treatments was
detected between abalone fed the Ulva and commercial diet treatments
at 22 °C. Of the genes that were differentially expressed, 21 were ex-
pressed at significantly lower levels in the Ulva treatment, while only
three genes were expressed at higher levels in abalone fed Ulva relative
to abalone fed the commercial diet (Fig. 2). These genes possess a di-
verse array of immune class GO terms including involvement in meta-
bolism, stress response and cell and apoptosis signaling (Table 1).

Many of the gene expression signatures due to differences in diet
recorded at 22 °C were maintained in abalone after exposure to heat
stress at 25 °C (Fig. 2; central panel). Here, 18 genes showed distinct
expression signatures between the Ulva and the commercial diet
(Fig. 2). Four genes demonstrated higher expression levels in Ulva fed
abalone in comparison to those fed a commercial diet. Three of these
genes were assigned functional immune class GO terms including; in-
volvement in metabolism (NFAT5_HUMAN, MARH4_DANRE, ERP29_-
BOVIN), stress response (ERP29_BOVIN) and apoptosis (ERP29_BOVIN;
Table 1). ERP29_BOVIN demonstrated opposite expression signatures

between the commercial and Ulva diets at 22 °C (high expression in
Ulva, low expression in commercial), expressed in the opposite manner
at 25 °C (low expression in Ulva, high expression in commercial; Fig. 2).
Notable genes found to be expressed at low levels in abalone fed the
Ulva diet relative to abalone fed the commercial diet at 25 °C included;
CATA_DROME, G6PI_PIG, 6PGD_HUMAN, PATS1_DICDI, PCY2_-
HUMAN, BL1S2_XENTR, FACE1_MOUSE, PSA5_MOUSE, ACT_PLAMG,
CE051_DANRE. These genes possess numerous immune class GO term
functions, primarily including involvement in metabolism, stress re-
sponse and cell signaling (Table 1).

Despite their distinct expression differences at 22 °C, small to no
gene expression differences due to diet was seen for several genes at
25 °C between abalone fed Ulva and commercial diets (including;
128UP_DROME, MANF_HUMAN, ABCA1_MOUSE and EIF3J_XENTR;
Fig. 2). Functional immune class GO terms describe involvement in
stress response (MANF_HUMAN), metabolism (ABCA1_MOUSE,
EIF3J_XENTR), response to stress, external stimuli, and phagocytosis
(ABCA1_MOUSE; Table 1).

3.4. Gene signature profiling of abalone fed a GSE supplemented diet

Abalone fed a commercial + 5%GSE diet expressed 14 genes at
higher levels, nine at lower levels and one (comp107321) at average
levels relative to the expression levels of abalone from the Ulva or
commercial diet treatments (Fig. 2). The expression profile of abalone
fed a GSE supplemented diet was similar to those abalone treated with
both Ulva and commercial diets at 25 °C. Genes expressed at low levels
in abalone fed the GSE supplemented diet, such as 6PGD_HUMAN,
PATS1_DICDI, PCY2_HUMAN and BL1S2_HUMAN demonstrated similar
expression levels in abalone fed Ulva diet at 25 °C (Fig. 2). Functional
immune class GO terms assigned to these genes included involvement
in metabolism (PATS1_DICDI, PCY2_HUMAN, 6PGD_HUMAN) and cy-
tokinesis (PATS1_DICDI; Table 1). The high expression level of NFA-
T5_HUMAN and ERP29_BOVIN detected in abalone fed the GSE sup-
plemented diet also displayed a similar expression pattern
demonstrated by abalone fed the Ulva diet at 25 °C (Fig. 2).

Fig. 2. Heatmap of gene expression differences between feed and
temperature stressed treatments. The colour comparison represents
(log2) gene expression differences in treatments relative to the total
average expression of all treatments. Blue heatmap bars represent
lower expression levels and red bars represent higher expression levels
relative to the average expression of all treatments for each of the 24
genes. Differentially expressed genes (listed to the right) were ordered
by hierarchal clustering of the 22 °C Ulva and commercial diets.
Treatments groups are indicated along the bottom track of the graph.
(For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Several highly expressed genes in abalone fed the GSE supple-
mented diet (FACE1_MOUSE, PSA5_MOUSE, S6A13_MOUSE,
ACT_PLAMG and CE051_DANRE, CATA_DROME, G6PI_PIG) also de-
monstrated similar expression levels in abalone fed the commercial diet
at 25 °C (Fig. 2). Immune class GO terms assigned to these genes include
involvement in metabolism (FACE1_MOUSE, PSA5_MOUSE, CAT-
A_DROME, G6PI_PIG), antigen presentation (PSA5_MOUSE), cytokine
activity (G6PI_PIG) and stress response (CATA_DROME; Table 1). The
low expression level of MARH4_DANRE was also common between
abalone fed the GSE supplemented diet and abalone fed a commercial
diet at 25 °C (Fig. 2).

3.5. Differentially expressed genes affected by temperature

Five hundred and twenty-one genes were found to be differentially
expressed (FDR < 0.05) using an F-test across the two temperature
contrasts between Ulva and commercial diet fed abalone at 22 °C and
25 °C (Table S3). Average expression of these genes ranged from
log2(−4.62) up to log2(11.11) counts per million with fold changes
ranged between −7.6 and 5.69 (Table S3). Several of these genes such
as HSP10 (comp91833_c0), HSPA5 (comp99703_c0), HSP60
(comp73030_c0), and AHSA1 (comp95581_c0) are known to be in-
volved in the heat shock response of molluscs (Artigaud et al., 2015;
Clark et al., 2008; Falfushynska et al., 2016; Wang et al., 2014), and
confirm the degree of heat stress exposure in this experiment. The ex-
pression of these four heat stress response genes were significantly up-
regulated in heat stressed treatments with fold changes ranging from
log2(0.44) up to log2(1.04) (Table S3). HSPA5 was an exception to this
general pattern with a small decrease recorded in expression for heat
stressed abalone fed a commercial diet at 25 °C (log2 (−0.2)) (Table
S3).

Out of the 521 genes differentially expressed between temperature
treatments, two of these genes (comp102157_c0 and comp87791_c0)
were also found to be significantly differently expressed between diet
treatments. Comp102157_c0 (6PGD_HUMAN) was down regulated in
abalone at 25 °C in both Ulva and commercial diet treatments relative to
their 22 °C controls with log2 fold-changes of −0.35 and −0.4, re-
spectively (Table S3). Comp87791_c0 (ERP29_BOVIN) was down
regulated in abalone fed a commercial diet at 25 °C relative to abalone
at 22 °C with log2 fold-changes of −0.21. Contrastingly, comp87791
(ERP29_BOVIN) expression was significantly up-regulated in abalone
fed a Ulva diet at 25 °C relative to abalone at 22 °C with log2 fold-
changes of 0.78 (Table S3).

4. Discussion

This is the first study to utilize Next-Generation sequencing tech-
niques to undertake a transcriptome wide (tentacle transcriptome)
analysis to investigate the combined effects of different diets and
temperatures on abalone gene expression as a means of identifying
genes associated with increased survival. Results of our RNA-seq and
bioinformatic analyses identified that heat stress had a considerable
transcriptomic response with 521 differentially expressed genes asso-
ciated with differences in temperature. Of greatest interest in this study
were the 24 differentially expressed genes that were influenced by diet.
Many of these gene expression responses were diet specific. Our results
demonstrate that diet could potentially alter the response of the innate
immune system before and during heat stress.

A lower level of expression of differentially expressed genes was
detected in abalone treated with an Ulva diet (generally promoting high
survival) compared to abalone fed commercial feed (resulting in low
survival). The comparably low survival of abalone fed the commercial
diet relative to abalone sustained on an Ulva or GSE supplemented diet
during heat stress, may be the result of a compromised immune system
even before being subjected to heat stress. Yarahmadi et al. (2014)
suggested that the low expression of stress response genes and coding

proteins in stressful situations is possibly due to an increased resistance
to common unwanted stressors during culture.

4.1. Heat shock protein response to temperature

Several commonly identified members of heat stress response gene
families were identified to be differentially expressed between abalone
maintained at 22 °C and 25 °C. HSP60, HSP10 and AHSAI genes were
consistently up-regulated in heat stressed abalone fed either a com-
mercial or Ulva diet relative to abalone held at the control temperature
with expression patterns consistent with past heat stress response re-
search of molluscs (Artigaud et al., 2015; Falfushynska et al., 2016).
However the expression of HSPA5 was higher in abalone fed an Ulva
diet in response to heat stress, while lower levels of expression were
found in abalone fed a commercial diet, relative to the 22 °C. HSPA5
(GRP78_CHICK) is a member of the HSP70 family and considered to be
involved in the heat stress response in molluscs (Clark et al., 2008;
Wang et al., 2014).

4.2. Oxidative response pathways and diet related survival of abalone

Biogenesis of lysosomal organelles complex-1, subunit 2 (BL1S2)
was down-regulated in greenlip abalone fed the Ulva or GSE supple-
mented diet. BL1S2 is required for the formation of lysosome-related
organelles and plays a role in intracellular vesicle trafficking. Lysosome
membrane proteins are an active contributor to apoptosis signaling
induced by classic stimuli such as oxidative stress (Köbis et al., 2013).
Oxidative stress and reactive oxygen species (ROS) destabilize the ly-
sosomal membrane through lipid peroxidation (Persson et al., 2003),
however, these effects can be neutralized by antioxidants (Roberg and
Ollinger, 1998). As a result, lipid peroxidation is commonly used as a
measure of oxidative stress (Vlahogianni et al., 2007). With both Ulva
and GSE known to provide antioxidants when ingested, the lower ex-
pression of BL1S2 in abalone fed Ulva and GSE supplemented diets
suggests an active antioxidant effect. Our results support those found in
similar studies. For example, BL1S2 has been found to be expressed at
significantly lower levels in fit and robust strains of rainbow trout
(Oncorhynchus mykiss) naturally selected for survival while challenged
with pathogen and temperature stress (Köbis et al., 2013). Similarly to
our study, Köbis et al. (2013) acknowledged that nearly all differen-
tially expressed genes associated with oxidative response pathways
showed reduced expression in fitter rainbow trout. This suggests that
fitter animals, such as abalone fed antioxidative compounds, may not
need to express these genes at high levels.

Abalone fed the commercial diet had higher expression of ethano-
lamine-phosphate cytidylyltransferase (PCY2) relative to the Ulva or
GSE supplemented diet. PCY2 is the main regulatory enzyme in the
production of phosphatidylethanolamine, which plays a key role in
regulation of cell growth and metabolic homeostasis (Pavlovic and
Bakovic, 2013). PCY2 activity has also been linked oxidative stress le-
vels (Basu et al., 2015) and has previously been found to be up-regu-
lated in livestock and domestic animals experiencing what is commonly
referred to as the “summer slump” (Bhusari et al., 2007). The summer
slump that can occur in livestock and domestic animals is caused by
ingesting long grasses infected with the fungus, Neotyphodium coeno-
phialum, which has been found to be the cause for symptoms such as
hyperthermia and decreases in feed intake, growth and reproductive
fitness (Schmidt and Osborn, 1993). PCY2 has also been found to be up-
regulated in European eels (Anguilla anguilla) from polluted sites
(Baillon et al., 2015). High expression of this gene is generally asso-
ciated with animals experiencing a form of stress and so may represent
the lower stress threshold of abalone fed the commercial diet.

The enzyme 6-Phosphogluconate dehydrogenase (6PGD) con-
tributes to antioxidant protection (Kozar et al., 2000; Puskas et al.,
2000). The reaction catalysed by the 6PGD enzyme produces NADPH,
which is an active component in gene pathways for protecting the cell
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against oxidant agents (Kukiełka and Cederbaum, 1990; Valderrama
et al., 2006). The down-regulation of this gene in abalone maintained at
25 °C relative to those at 22 °C in both Ulva and commercial diet
treatments suggests that the activation of this gene is affected by tem-
perature. The basal expression of this gene however appears to be af-
fected by diet. The lower expression of 6PGD in abalone fed the Ulva
and GSE supplemented diet in comparison to the commercial diet
suggests that abalone fed the commercial diet possess a higher phy-
siological demand for oxidative defense or that the antioxidants in the
Ulva and GSE supplemented feeds suppress the expression of some
genes otherwise involved in promoting oxidative defense. 6PGD en-
zyme activity has been tied to heavy metal exposure in the grass carp
(Ctenopharyngodon idella) (Hu et al., 2013), and high pesticide use
(Ceyhun et al., 2010) and overstocking (Aksakal et al., 2011) in the
rainbow trout (O.mykiss).

Endoplasmic reticulum resident protein 29 (ERP29_BOVIN) is a
member of the thioredoxin superfamily proteins, which have vital roles
in oxidative protein folding (Lu and Holmgren, 2014). ERP29 expres-
sion can be induced by stress and may provide protection by facilitating
the re-folding of denatured or aggregated proteins (Mkrtchiana et al.,
1998). ERP29 has also been found to be induced with exposure to
cadmium stress and is suggested to be part of the immune stress re-
sponse in the mussel, Mytilus galloprovincialis (Wu et al., 2016). Inter-
estingly, the expression of ERP29 was found to be expressed at lower
levels in abalone fed a commercial diet when exposed to heat stress, yet
expressed at higher levels in Ulva fed abalone relative to the unstressed
controls on the same diets. The expression of ERP29 was also com-
paratively high in abalone fed the GSE supplemented commercial diet
and exposed to heat stress. These patterns suggest that diets high in
antioxidative compounds such as provided by an Ulva or GSE supple-
mented diet may provide the potential for abalone to respond to heat
stress with increased expression of potentially vital oxidative defense
genes. This may increase their chance of survival when exposed to
stressors such as summer mortality.

Catalase is a key antioxidant enzyme that exists in all aerobic or-
ganisms (Klotz and Loewen, 2003). Catalase (CATA_DROME) expres-
sion was down-regulated in Ulva diet treatments with and without heat
stress exposure. The expression of this gene was significantly higher in
abalone fed the purely commercial diet at both the control and heat
stress exposed treatments. Antioxidant enzymes are known to work as
the first line of defense against free radicals (Roch, 1999). In the anti-
oxidant enzymatic system, catalase promotes a high degree of re-
sistance to hydrogen peroxide (W. Zhang et al., 2011) and is responsible
for breaking down damaging compounds such as hydroxyl radicals,
hypochlororous acid and singlet oxygen into oxygen and water
(Anderson, 2001). Catalase activity has become a common measure of
oxidative stress with pathogenic infection (W. Zhang et al., 2011) and
exposure to pollution (Damiens et al., 2004; Oliveira et al., 2007;
Vlahogianni et al., 2007) in molluscs. Catalase activity was also re-
corded to be higher in Pacific oysters (Crassostrea gigas) exposed to high
temperatures relative to those that were not (Damiens et al., 2004).
Considering the known function of catalase in the antioxidant defense
system, the lower expression of the Catalase gene in abalone fed the
Ulva diet in this study supports the idea that a Ulva diet provides some
form of antioxidant defense when ingested (Wan et al., 2004). Inter-
estingly, the expression of Catalase was relatively higher in abalone fed
the GSE supplemented diet compared to those fed the Ulva and com-
mercial diet treatments. The GSE supplemented diet resulted in sig-
nificantly higher survival rates of abalone compared to the other heat
stressed treatments which may suggest that abalone fed this diet may be
better equipped to combat oxidative stress. Considering that the GSE
supplemented diet contains both the regular commercial diet (high in
protein and carbohydrate and fat) and a source of beneficial compounds
(such as antioxidants) from the GSE, abalone on this diet may possess a
relatively more complete diet when compared to either the purely
commercial or Ulva diet tested in this study.

4.3. Innate immune response pathways and diet related survival of abalone

Mesencephalic Astrocyte-derived Neurotrophic Factor
(MANF_HUMAN) has been found to be up-regulated by various forms of
endoplasmic reticulum stress, with silencing of MANF rendering cells
more susceptible to endoplasmic reticulum stress-induced death and
over expression improving cell viability (Apostolou et al., 2008). The
high expression of MANF in both heat stressed Ulva and commercial
diet treatments, as well as in the commercial diet treatment that was
not exposed to heat stress, may suggest a stress reaction. Abalone fed
the GSE supplemented diet did not appear to be affected in the same
manner. The comparably lower expression of MANF in the GSE sup-
plemented abalone may reflect a shift in gene pathways as a result of
the supplementation. For example, different diets in the European sea
bass (Dicentrarchus labrax) have been suggested to change in, or pro-
mote, alternate gene pathways involved in innate immune responses
(Geay et al., 2011). It is also possible that abalone on the GSE supple-
mented diet may not have experienced the same degree of stress at the
molecular level as the heat stressed Ulva and commercial diet fed
abalone, given the high survival rate promoted by GSE.

This same distinction between the three heat stressed groups ap-
pears in the expression signature of ATP-binding cassette sub-family A
member 1 (ABCA1_MOUSE) gene. ABCA1 is implicated in convergent
functions including lipid metabolism, inflammation and apoptosis
(Schmitz et al., 2000) such as preserving the viability of macrophages
following exposure to oxidized phospholipids and apoptotic cells (Yvan-
Charvet et al., 2010). However ABCA1 has been found to be negatively
affected by external stressors resulting in down-regulation during heat
(Tang et al., 2015) and inflammatory stress, which can result in lipid-
mediated injuries in peripheral tissues (Ma et al., 2008). The gene ex-
pression levels of the abalone fed the commercial diet at 22 °C com-
pared to the heat stressed abalone fed the commercial diet also suggests
ABCA1 is down regulated with heat stress. However, the response of
this gene with Ulva and GSE supplemented feed treatments do not. The
highest level of ABCA1 gene expression was demonstrated in the GSE
supplemented abalone, which suggests they have a greater ability to
maintain this high expression during heat stress and potentially have an
increased ability to preserve macrophages (Yvan-Charvet et al., 2010).
Expression of ABCA1 was low in abalone fed Ulva even though the Ulva
diet is known to promote survival during heat stress (Bansemer et al.,
2016; Stone et al., 2014).

The Nuclear factor of activated T-cells 5 (NFAT5_HUMAN) gene is
generally considered to be involved in the immune response during
times of osmotic stress (Cheung and Ko, 2013; Neuhofer, 2010). The
high expression of the NFAT5 in the Ulva and the GSE supplemented
treatments along with their high survival rate after heat stress, may
suggest a high immune response capacity. Gene expression analysis of
the pearl oyster (Pinctada fucata) revealed that the NFAT5 genes may
also be involved in the innate immune response to lipopolysaccharide
and polyinosinic-polycytidylic acid, and in the nucleus inserting op-
eration (Huang et al., 2015). NFAT5s increased expression has also
been suggested to play a role in moderating osmotic stress in Atlantic
salmon (Salmo salar) in response to changes between freshwater and
seawater environments (Lorgen et al., 2017). NFAT5 activity has been
demonstrated to be related to some cytokine activity such as that of
Interleukin-1beta, which has been linked with the inhibition of apop-
tosis during hyperosmolar stress in human cell stress trials (Lee et al.,
2008).

Ulvans are water-soluble sulfated polysaccharides derived from Ulva
species of green seaweed that promote antioxidative effects (Govindan
et al., 2012). Ulvans have also been found to increase the mRNA ex-
pression of cytokines such as Interleukin-1beta (Berri et al., 2016). In-
terleukin-1beta stimulates the immune responses by activating lym-
phocytes or promoting the release of other cytokines that then activate
lymphocytes, macrophages or NK cells. In a study to describe the im-
munological benefits of nucleotide-supplemented turbot (Scophthalmus
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maximus) feed, Interleukin-1beta was found to increase its expression
significantly in comparison to the control diet and its high expression
was indicative of tissue with high macrophage presence (Low et al.,
2003). High Interleukin-1beta levels were also found to be associated
with higher survival to bacterial challenge after guava leaf supple-
mentation of the diet of rohu carp, Labeo rohita, (Giri et al., 2015). The
high expression of the NFAT5 gene in the abalone fed Ulva without heat
stress, and its continued high expression after heat stress exposure,
suggests NFAT5 could be acting as a frontloading (Barshis et al., 2013)
or preparative defense gene (Dong et al., 2008). Preparative defense
genes usually possess a higher baseline expression prior to stress and
help maintain physiological health by providing a faster protein level
response when stress occurs. While the expression of NFAT5 found in
this study is potentially linked to diets high in antioxidant compounds,
there is also a general decrease in abalone appetite during heat stress
(Bonga, 1997; Stone et al., 2014), which may suggest that the compo-
sition of the abalone diet immediately prior to heat stress may have a
more important influence on survival than what the abalone consumes
during the heat stress.

5. Conclusion

The nutrigenomic approach used here has revealed many genes with
related processes affected by the different diets that may explain var-
iation in survival of abalone during heat stress. In particular, genes
involved in oxidative defense and innate immunity were influenced by
diet. The general down regulation of many of these genes in the Ulva
fed treatments relative to abalone fed the commercial diet may be ex-
plained by a high resistance to unwanted stressors. This suggests that
commercial diets may lack nutritionally beneficial compounds that
boost the immune system. The 5% GSE replacement diet may stimulate
several alternate gene pathways involved in immune response. These
pathways may be responsible for Ulva and GSE supplemented feeds
resulting in high survival of greenlip abalone during heat stress. This
information may assist future research to develop cost effective diets for
improving the health, survival and productivity of abalone in aqua-
culture.
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